• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Prognostics and health management for electromechanical system: A review

Prognostics and health management for electromechanical system: A review

  • 摘要: As a transmission component, gears take on a great significance for the Electromechanical system of aviation equipment and has long aroused the widespread attention of researchers. Fault diagnosis and remaining useful life (RUL) prediction during the gear operation is critical to prognostics and health management (PHM) of gear transmission systems. In this paper, the focus is placed on gear PHM methods. This paper attempts to review the existing methods and summarize them into four types (including physical model-based, knowledge model-based, data-driven model-based, as well as hybrid model-based methods). Based on a wide variety of methods, the principle and the application situation are indicated. In particular, the data-driven model-based methods consist of stochastic algorithms, statistical algorithms, as well as the artificial intelligence (AI) method. The fault diagnosis, performance degradation and RUL prediction of various methods are primarily summarized. Furthermore, the advantages and disadvantages of various methods are assessed, and the prospect of the Digital Twin (DT) is forecasted to boost the applications of PHM.

     

    Abstract: As a transmission component, gears take on a great significance for the Electromechanical system of aviation equipment and has long aroused the widespread attention of researchers. Fault diagnosis and remaining useful life (RUL) prediction during the gear operation is critical to prognostics and health management (PHM) of gear transmission systems. In this paper, the focus is placed on gear PHM methods. This paper attempts to review the existing methods and summarize them into four types (including physical model-based, knowledge model-based, data-driven model-based, as well as hybrid model-based methods). Based on a wide variety of methods, the principle and the application situation are indicated. In particular, the data-driven model-based methods consist of stochastic algorithms, statistical algorithms, as well as the artificial intelligence (AI) method. The fault diagnosis, performance degradation and RUL prediction of various methods are primarily summarized. Furthermore, the advantages and disadvantages of various methods are assessed, and the prospect of the Digital Twin (DT) is forecasted to boost the applications of PHM.

     

/

返回文章
返回