• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Vibration features of rotor unbalance and rub-impact compound fault

Vibration features of rotor unbalance and rub-impact compound fault

  • 摘要: To meet the requirements of improving work efficiency, the rotating machinery represented by gas turbines reduces the gap between rotor and stator, making rub-impact occur frequently. However, a few researchers combined with the current gas turbine condition monitoring concluded that it could diagnose the rub-impact fault. In this study, the vibration features that can help diagnose the compound fault of rotor unbalance and rub-impact are researched. Taking the Jeffcott rotor system as the research object, the mathematical model is constructed considering the coupling of radial and torsion, and the Runge-Kutta method is used to solve the differential equation. Through the analysis of the model results, it is concluded that the compound fault can be diagnosed by the vibration features-reduction of the fundamental frequency amplitude. Finally, the correctness of the model is verified by experiments. At the same time, the vibration features of the rotor and stator are compared to show the consistency of vibration features, which shows that the proposed features can diagnose this compound fault.

     

    Abstract: To meet the requirements of improving work efficiency, the rotating machinery represented by gas turbines reduces the gap between rotor and stator, making rub-impact occur frequently. However, a few researchers combined with the current gas turbine condition monitoring concluded that it could diagnose the rub-impact fault. In this study, the vibration features that can help diagnose the compound fault of rotor unbalance and rub-impact are researched. Taking the Jeffcott rotor system as the research object, the mathematical model is constructed considering the coupling of radial and torsion, and the Runge-Kutta method is used to solve the differential equation. Through the analysis of the model results, it is concluded that the compound fault can be diagnosed by the vibration features-reduction of the fundamental frequency amplitude. Finally, the correctness of the model is verified by experiments. At the same time, the vibration features of the rotor and stator are compared to show the consistency of vibration features, which shows that the proposed features can diagnose this compound fault.

     

/

返回文章
返回