留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review

Hansong JI Qinghua SONG Munish Kumar GUPTA Wentong CAI Youle ZHAO Zhanqiang LIU

Hansong JI, Qinghua SONG, Munish Kumar GUPTA, Wentong CAI, Youle ZHAO, Zhanqiang LIU. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. 先进制造科学与技术, 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005
引用本文: Hansong JI, Qinghua SONG, Munish Kumar GUPTA, Wentong CAI, Youle ZHAO, Zhanqiang LIU. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. 先进制造科学与技术, 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005
Hansong JI, Qinghua SONG, Munish Kumar GUPTA, Wentong CAI, Youle ZHAO, Zhanqiang LIU. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. Journal of Advanced Manufacturing Science and Technology , 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005
Citation: Hansong JI, Qinghua SONG, Munish Kumar GUPTA, Wentong CAI, Youle ZHAO, Zhanqiang LIU. Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review[J]. Journal of Advanced Manufacturing Science and Technology , 2021, 1(2): 2021005. doi: 10.51393/j.jamst.2021005

Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review

doi: 10.51393/j.jamst.2021005
详细信息
    通讯作者:

    Qinghua SONG,E-mail:ssinghua@sdu.edu.cn

Grain scale modelling and parameter calibration methods in crystal plasticity finite element researches: a short review

  • 摘要:

    Crystalline material is commonly used in human society, crystal plasticity finite element (CPFE) method is an effective way to explore the grain scale thermodynamics behaviors of crystalline materials. In order to promote the development and application of CPFE method, this article briefly reviews grain scale microstructure modelling methods, grain scale constitutive modelling theories and grain scale constitutive parameter calibration methods used in recent CPFE works. Existing grain geometry modelling, polycrystalline microstructure modelling and multiphase microstructure modelling methods for crystalline materials were critically reviewed. Basic grain scale constitutive theories including single crystal elastic, single crystal plastic, grain boundary, damage and thermo-mechanic models were listed. Frequently-used grain scale constitutive parameter calibration methods were summarized.

  • [1] . Hassanin H, El-Sayed MA, Elshaer A, et al. Microfabrication of net shape zirconia/alumina nanocomposite micro parts. Nanomaterials 2018;8(8):593.
    [2] . Qu XX, Cao K, Jiang H, et al. Mechanical anisotropy and ideal strength of ThBC. J Phys Chem Solids 2018;122:203-9.
    [3] . Zhang T, Liu Z, Shi Z, et al. Investigation on size effect of specific cutting energy in mechanical micro-cutting. Int J Adv Manuf Technol 2017;91:2621-33.
    [4] . Yuan Y, Jing X, Ehmann KF, et al. Modeling of cutting forces in micro end-milling. J Manuf Process 2018;31:844-58.
    [5] . Garcia DR, Zhang Z, Linke BS, et al. Molecular dynamics simulations of single grain pure aluminum in a vice fixture for nanomanufacturing applications. CIRP J Manuf Sci Technol 2018;23:91-7.
    [6] . Bennett VP, McDowell DL. Crack tip displacement of microstructurally small surface cracks in single phase ductile polycrystals. Eng Fract Mech 2003;70:185-207.
    [7] . Okumura D, Higashi Y, Sumida K, et al. A homogenization theory of strain gradient single crystal plasticity and its finite element discretization. Int J Plast 2007;23:1148-66.
    [8] . Delannay L, Jacques PJ, Kalidindi SR. Finite element modeling of crystal plasticity with grains shaped as truncated octahedrons. Int J Plast 2006;22:1879-98.
    [9] . Sundararaghavan V, Kumar A, Sun S. Crystal plasticity simulations using nearest neighbor orientation correlation function. Acta Mater 2015;93:12-23.
    [10] . Gong Z, Zhao W, Guan K, et al. Influence of grain boundary and grain size on the mechanical properties of polycrystalline ceramics:Grain-scale simulations. J Am Ceram Soc 2020;103:5900-13.
    [11] . Farukh F, Zhao LG, Jiang R, et al. Realistic microstructure-based modelling of cyclic deformation and crack growth using crystal plasticity. Comput Mater Sci 2016;111:395-405.
    [12] . Liang Y, Jiang S, Zhang Y, et al. Deformation heterogeneity and texture evolution of nitife shape memory alloy under uniaxial compression based on crystal plasticity finite element method. J Mater Eng Perform 2017;26:2671-82.
    [13] . Pirgazi H. On the alignment of 3D EBSD data collected by serial sectioning technique. Mater Charact 2019;152:223-9.
    [14] . Abraham ST, Shivaprasad S, Das CR, et al. Effect of grain size distribution on the acoustic nonlinearity parameter. J Appl Phys 2020;127:185102.
    [15] . Abbaszadeh M, Kadkhodapour J, Schmauder S, et al. A study on the effect of grain dimension on the deformation of stent struts in tension, bending and unbending loading modes. Int J Mech Sci 2016;118:36-44.
    [16] . Chandra S, Samal MK, Kapoor R, et al. Deformation behavior of Nickel-based superalloy Su-263:Experimental characterization and crystal plasticity finite element modeling. Mater Sci Eng A 2018;735:19-30.
    [17] . Ji H, Song Q, Gupta MK, et al. A pseudorandom based crystal plasticity finite element method for grain scale polycrystalline material modeling. Mech Mater 2020;144:103347.
    [18] . Lim H, Jong Bong H, Chen SR, et al. Developing anisotropic yield models of polycrystalline tantalum using crystal plasticity finite element simulations. Mater Sci Eng A 2018;730:50-6.
    [19] . Feather WG, Lim H, Knezevic M. A numerical study into element type and mesh resolution for crystal plasticity finite element modeling of explicit grain structures. Comput Mech 2021;67:33-55.
    [20] . Shaat M, Fathy A, Wagih A. Correlation between grain boundary evolution and mechanical properties of ultrafine-grained metals. Mech Mater 2020;143:103321.
    [21] . Peng J, Zhang Z, Chen H, et al. Investigation on the anisotropy of mechanical properties along different orientations of an AZ31 hot-extrusion bar. J Alloys Compd 2021;854:157108.
    [22] . Zhang M, Tang B, Yang R, et al. Combined crystal plasticity simulations and experiments for parameter identification:application to near-β titanium alloy. J Mater Sci 2020;55:15043-55.
    [23] . Ghodrati M, Ahmadian M, Mirzaeifar R. Three-dimensional study of rolling contact fatigue using crystal plasticity and cohesive zone method. Int J Fatigue 2019;128:105208.
    [24] . Hama T, Kobuki A, Takuda H. Crystal-plasticity finite-element analysis of anisotropic deformation behavior in a commercially pure titanium Grade 1 sheet. Int J Plast 2017;91:77-108.
    [25] . Chen SD, Liu XH, Liu LZ. Grain statistics effect on deformation behavior in asymmetric rolling of pure copper foil by crystal plasticity finite element model. Trans Nonferrous Met Soc China (English Ed) 2015;25:3370-80.
    [26] . Han Z, Zhang K, Yang J, et al. Effects of volume fraction of Ni-containing LPSO phase on mechanical and corrosion properties of Mg-Gd-Ni alloys. Mater Corros 2019;70:537-48.
    [27] . Flint TF, Sun YL, Xiong Q, et al. Phase-field simulation of grain boundary evolution in microstructures containing second-phase particles with heterogeneous thermal properties. Sci Rep 2019;9:1-11.
    [28] . Yuan X, Zhu J. Anisotropic distribution of phase boundaries and its potential correlation with magnetic properties in a sintered NdFeB permanent magnet. Phys Status Solidi Basic Res 2020;257:1-8.
    [29] . Geng Y, Harrison N. Functionally graded bimodal Ti6Al4V fabricated by powder bed fusion additive manufacturing:Crystal plasticity finite element modelling. Mater Sci Eng A 2020;773:138736.
    [30] . Roters F, Eisenlohr P, Hantcherli L, et al. Overview of constitutive laws, kinematics, homogenization and multiscale methods in crystal plasticity finite-element modeling:Theory, experiments, applications. Acta Mater 2010;58:1152-211.
    [31] . Roters F, Diehl M, Shanthraj P, et al. DAMASK-The Düsseldorf Advanced Material Simulation Kit for modeling multi-physics crystal plasticity, thermal, and damage phenomena from the single crystal up to the component scale. Comput Mater Sci 2019;158:420-78.
    [32] . Gröger R, Vitek V. Breakdown of the schmid law in BCC Molybdenum related to the effect of shear stress perpendicular to the slip direction. Mater Sci Forum 2005;482:123-6.
    [33] . Liu W, Chen BK, Pang Y. Numerical investigation of evolution of earing, anisotropic yield and plastic potentials in cold rolled FCC aluminium alloy based on the crystallographic texture measurements. Eur J Mech A/Solids 2019;75:41-55.
    [34] . Physics A. Bounds and self-consistent estimates for creep of polycrystalline materials. Proc R Soc London A Math Phys Sci 1976;348:101-27.
    [35] . Ma A, Roters F. A constitutive model for fcc single crystals based on dislocation densities and its application to uniaxial compression of aluminium single crystals. Acta Mater 2004;52:3603-12.
    [36] . Wong SL, Madivala M, Prahl U, et al. A crystal plasticity model for twinning-and transformation-induced plasticity. Acta Mater 2016;118:140-51.
    [37] . Cereceda D, Diehl M, Roters F, et al. Unraveling the temperature dependence of the yield strength in single-crystal tungsten using atomistically-informed crystal plasticity calculations. Int J Plast 2016;78:242-65.
    [38] . Shanthraj P, Svendsen B, Sharma L, et al. Elasto-viscoplastic phase field modelling of anisotropic cleavage fracture. J Mech Phys Solids 2017;99:19-34.
    [39] . Ren K, Chen LR, Cheng YY, et al. A grain level model for deformation and failure of ultrafine-grained tungsten. Sci China Technol Sci 2019;62:755-61.
    [40] . Xu XP, Needleman A. Numerical simulations of dynamic interfacial crack growth allowing for crack growth away from the bond line. Int J Fract 1985;74:253-75.
    [41] . Wang Z, Zhang J, Xu Z, et al. Crystal plasticity finite element modeling and simulation of diamond cutting of polycrystalline copper. J Manuf Process 2019;38:187-95.
    [42] . Wu B, Vajragupta N, Lian J, et al. Prediction of plasticity and damage initiation behaviour of C45E + N steel by micromechanical modelling. Mater Des 2017;121:154-66.
    [43] . Zhao N, Roy A, Wang W, et al. Coupling crystal plasticity and continuum damage mechanics for creep assessment in Cr-based power-plant steel. Mech Mater 2019;130:29-38.
    [44] . Chen J, Fensin SJ. Associating damage nucleation and distribution with grain boundary characteristics in Ta. Scr Mater 2020;187:329-34.
    [45] . Liu L, Maresca F, Hoefnagels JPM, et al. Revisiting the martensite/ferrite interface damage initiation mechanism:The key role of substructure boundary sliding. Acta Mater 2021;205:116533.
    [46] . Noell PJ, Sabisch JEC, Medlin DL, et al. Nanoscale conditions for ductile void nucleation in copper:Vacancy condensation and the growth-limited microstructural state. Acta Mater 2020;184:211-24.
    [47] . Dakshinamurthy M, Ma A. Crack propagation in TRIP assisted steels modeled by crystal plasticity and cohesive zone method. Theor Appl Fract Mech 2018;96:545-55.
    [48] . Tucker JC, Cerrone AR, Ingraffea AR, et al. Crystal plasticity finite element analysis for René88DT statistical volume element generation. Model Simul Mater Sci Eng 2015;23.
    [49] . Zhang J, Johnston J, Chattopadhyay A. Physics-based multiscale damage criterion for fatigue crack prediction in aluminium alloy. Fatigue Fract Eng Mater Struct 2014;37:119-31.
    [50] . Na SH, Sun WC. Computational thermomechanics of crystalline rock, Part I:A combined multi-phase-field/crystal plasticity approach for single crystal simulations. Comput Methods Appl Mech Eng 2018;338:657-91.
    [51] . El Shawish S, Cizelj L. Combining single-and poly-crystalline measurements for identification of crystal plasticity parameters:Application to austenitic stainless steel. Crystals 2017;7(6):181.
    [52] . Fischer T, Ulan kyzy S, Munz O, et al. Microstructure-based modelling of rubbing in polycrystalline honeycomb structures. Contin Mech Thermodyn 2020;32:1371-83.
    [53] . Bong HJ, Lee J, Lee MG. Study on plastic response under biaxial tension and its correlation with formability for wrought magnesium alloys. JOM 2020;72:2568-77.
    [54] . Baltic S, Magnien J, Gänser HP, et al. Coupled damage variable based on fracture locus:Prediction of ductile failure in a complex structure. Int J Solids Struct 2020;207:132-44.
    [55] . Adzima F, Balan T, Manach PY, et al. Crystal plasticity and phenomenological approaches for the simulation of deformation behavior in thin copper alloy sheets. Int J Plast 2017;94:171-91.
    [56] . El Shawish S, Cizelj L. Numerical investigation of grain misorientations at and close to the free surface of FCC polycrystalline metals. Comput Mater Sci 2016;113:133-42.
    [57] . Breumier S, Sao-Joao S, Villani A, et al. High strain rate micro-compression for crystal plasticity constitutive law parameters identification. Mater Des 2020;193:108789.
    [58] . Renner E, Bourceret A, Gaillard Y, et al. Identifiability of single crystal plasticity parameters from residual topographies in Berkovich nanoindentation on FCC nickel. J Mech Phys Solids 2020;138:103916.
    [59] . Steglich D, Brocks W, Bohlen J, et al. Modelling direction-dependent hardening in magnesium sheet forming simulations. Int J Mater Form 2011;4:243-53.
    [60] . Reimann D, Nidadavolu K, ul Hassan H, et al. Modeling macroscopic material behavior with machine learning algorithms trained by micromechanical simulations. Front Mater 2019;6. https://doi.org/10.3389/fmats.2019.00181.
  • 加载中
图(1)
计量
  • 文章访问数:  4864
  • HTML全文浏览量:  2274
  • PDF下载量:  209
  • 被引次数: 0
出版历程
  • 收稿日期:  2021-03-05
  • 修回日期:  2021-03-22
  • 网络出版日期:  2021-04-07
  • 刊出日期:  2021-04-07

目录

    /

    返回文章
    返回