• 中文核心期刊要目总览
  • 中国科技核心期刊
  • 中国科学引文数据库(CSCD)
  • 中国科技论文与引文数据库(CSTPCD)
  • 中国学术期刊文摘数据库(CSAD)
  • 中国学术期刊(网络版)(CNKI)
  • 中文科技期刊数据库
  • 万方数据知识服务平台
  • 中国超星期刊域出版平台
  • 国家科技学术期刊开放平台
  • 荷兰文摘与引文数据库(SCOPUS)
  • 日本科学技术振兴机构数据库(JST)

Ultrasonic vibration-assisted micro-milling: A comprehensive review

Ultrasonic vibration-assisted micro-milling: A comprehensive review

  • 摘要: Mechanical micro-milling has become a prominent micromachining technique in recent years, and it has advanced high machining efficiency and precision. The advantages of versatility, utility, cost-effectiveness, and efficiency make it suitable for varied industries such as biomedicine, electronics, aerospace, and aviation. However, Conventional Micro-Milling (CMM) faces difficulties, particularly in dealing with difficult-to-cut materials. To solve the above problems, Ultrasonic Vibration-Assisted Micro-Milling (UVAMM) is proposed, which can efficiently address the challenges of machining difficult-to-cut materials. UVAMM is able to inhibit chip formation and reduce the intense friction between the flank surface of the tool and the machined surface. What’s more, it can reduce cutting forces, cutting temperature, and residual stress on the workpiece surface. Finally, it leads to an enhancement in the finished surface quality of difficult-to-cut materials, maximizing the overall machining performance. This paper reviewed UVAMM processing, such as mathematical modeling, chip formation, burr formation, tool wear, cutting forces, cutting temperature, and surface morphology. Furthermore, the finite element simulation of UVAMM and the significance of Minimum Quantity Lubrication (MQL) in UVAMM are discussed. At the end, advantages of UVAMM for difficult-to-cut materials such as titanium alloys, steel alloys, nickel-based alloys, aluminum alloys, composites, brass, and optical glass are summarized.

     

    Abstract: Mechanical micro-milling has become a prominent micromachining technique in recent years, and it has advanced high machining efficiency and precision. The advantages of versatility, utility, cost-effectiveness, and efficiency make it suitable for varied industries such as biomedicine, electronics, aerospace, and aviation. However, Conventional Micro-Milling (CMM) faces difficulties, particularly in dealing with difficult-to-cut materials. To solve the above problems, Ultrasonic Vibration-Assisted Micro-Milling (UVAMM) is proposed, which can efficiently address the challenges of machining difficult-to-cut materials. UVAMM is able to inhibit chip formation and reduce the intense friction between the flank surface of the tool and the machined surface. What’s more, it can reduce cutting forces, cutting temperature, and residual stress on the workpiece surface. Finally, it leads to an enhancement in the finished surface quality of difficult-to-cut materials, maximizing the overall machining performance. This paper reviewed UVAMM processing, such as mathematical modeling, chip formation, burr formation, tool wear, cutting forces, cutting temperature, and surface morphology. Furthermore, the finite element simulation of UVAMM and the significance of Minimum Quantity Lubrication (MQL) in UVAMM are discussed. At the end, advantages of UVAMM for difficult-to-cut materials such as titanium alloys, steel alloys, nickel-based alloys, aluminum alloys, composites, brass, and optical glass are summarized.

     

/

返回文章
返回